Finite Element Analysis of Interfacial Crack Propagation Based on Local Shear, Part Ii--fracture

نویسندگان

  • HERZL CHAI
  • MARTIN Y. M. CHIANG
چکیده

Al~tract--The mechanics of fracture of a stably extending interface crack in polymeric adhesive bonds undergoing very large shear deformation is studied using a rate-del~ndent finite element analysis. Plane-strain and J2 plasticity conditions are considered. Based on recent experimental observations, it is assumed that the local engineering shear strain at a certain distance (i.e. for the polymer adhesive studied, approximately a tenth bond thickness) straight ahead of the crack tip remains constant during the crack propagation. This critical strain is rate dependent, being a function of the crack velocity. The proposed fracture criterion is applied to several experimental crack growth histories pertaining to different specimen geometries, bond thicknesses and crack velocities. Although the analysis is highly sensitive to rate effects and other material characteristics, the comparison is generally reasonably successful. The analysis also provides quantitative insight into the mechanics of other failure modes observed in the experiments. In particular, the growth of a detrimental micrndebond which is formed several bond thicknesses ahead of the crack tip seem to be controlled by the bond-normal tensile stress while hydrostatic tensile stresses appear responsible for the development of a kink or a large void at the crack tip which temporarily arrests the crack. All these and other failure modes are activated under large strains, which manifests the important rule of plasticity in the fracture of polymeric joints. © 1997 Published by Elsevier Science Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagation of Crack in Linear Elastic Materials with Considering Crack Path Correction Factor

Modeling of crack propagation by a finite element method under mixed mode conditions is of prime importance in the fracture mechanics. This article describes an application of finite element method to the analysis of mixed mode crack growth in linear elastic fracture mechanics. Crack - growth process is simulated by an incremental crack-extension analysis based on the maximum principal stress c...

متن کامل

A two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis

Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...

متن کامل

Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation

This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...

متن کامل

On the crack propagation modeling of hydraulic fracturing by a hybridized displacement discontinuity/boundary collocation method

Numerical methods such as boundary element and finite element methods are widely used for the stress analysis in solid mechanics. This study presents boundary element method based on the displacement discontinuity formulation to solve general problems of interaction between hydraulic fracturing and discontinuities. The crack tip element and a higher order boundary displacement collocation techn...

متن کامل

Predicting Depth and Path of Subsurface Crack Propagation at Gear Tooth Flank under Cyclic Contact Loading

In this paper, a two-dimensional computational model is proposed for predicting the initiation position and propagation path of subsurface crack of spur gear tooth flank. In order to simulate the contact of teeth, an equivalent model of two contacting cylinders is used. The problem is assumed to be under linear elastic fracture mechanic conditions and finite element method is used for numerical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003